Calcium control of ciliary reversal in ionophore-treated and ATP- reactivated comb plates of ctenophores
نویسندگان
چکیده
Previous work showed that ctenophore larvae swim backwards in high-KCl seawater, due to a 180 degrees reversal in the direction of effective stroke of their ciliary comb plates (Tamm, S. L., and S. Tamm, 1981, J. Cell Biol., 89: 495-509). Ion substitution and blocking experiments indicated that this response is Ca2+ dependent, but comb plate cells are innervated and presumably under nervous control. To determine whether Ca2+ is directly involved in activating the ciliary reversal mechanism and/or is required for synaptic triggering of the response, we (a) determined the effects of ionophore A23187 and Ca2+ on the beat direction of isolated nerve-free comb plates dissociated from larvae by hypotonic, divalent cation-free medium, and (b) used permeabilized ATP-reactivated models of comb plates to test motile responses to known concentrations of free Ca2+. We found that 5 microM A23187 and 10 mM Ca2+ induced dissociated comb plate cells to beat in the reverse direction and to swim counterclockwise in circular paths instead of in the normal clockwise direction. Detergent/glycerol-extracted comb plates beat actively in the presence of ATP, and reactivation was reversibly inhibited by micromolar concentrations of vanadate. Free Ca2+ concentrations greater than 10(-6)M caused reversal in direction of the effective stroke but no significant increase in beat frequency. These results show that ciliary reversal in ctenophores, like that in protozoa, is activated by an increase in intracellular free Ca2+ ions. This allows the unique experimental advantages of ctenophore comb plate cilia to be used for future studies on the site and mechanism of action of Ca2+ in the regulation of ciliary motion.
منابع مشابه
A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates.
We have used the giant ciliary comb plates of ctenophores to record electrical activity directly from cilia. A compound action potential was recorded extracellularly over most of the length of the comb plate cilia in response to electrical stimulation of the ectodermal nerve net. The ciliary action potential was correlated with intracellularly recorded action potentials, selectively blocked by ...
متن کاملVisualization of calcium transients controlling orientation of ciliary beat
To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb p...
متن کاملLithocytes are transported along the ciliary surface to build the statolith of ctenophores
All organisms capable of locomotion possess equilibrium receptor systems that use the gravitational field as a reference. In aquatic invertebrates, gravity receptors (statocysts) are considered to be the earliest known sense organs. Statocysts are composed of a dense mass (statolith or statoconia) that loads and mechanically stimulates sensory receptors, which are commonly cilia. Ctenophores, o...
متن کاملP-76: Cytogenetic Investigation of Parthenogenetic Mouse Embryos Generated from In Vitro Activated Oocytes by Hydrostatic Pressure in The Presence of Calcium Ionophore and Ethanol
Background: The advances in cytogenetic techniques during the last few years have permitted not only the study of large populations of wild and domestic animals, but also the detection of chromosome anomalies in embryos. Chromosomal abnormalities are the most common cause of embryonic and fetal mortality in mammals. Most reports of chromosome anomalies in parthenogenetic embryos describe numeri...
متن کاملCtenophores
Ctenophores are also characterized by a pair of tentacles that they spread out like a web to catch zooplankton prey, such as small crustaceans and even small fish. There is even one group of ctenophores, the Beroids, which feeds on other ctenophores, and there are also a few groups that are benthic (they absorb their comb plates following embryonic development and creep along on the ocean floor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 100 شماره
صفحات -
تاریخ انتشار 1985